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Long surface waves incident on a submerged 
horizontal plate 

By P. F. SIEW A N D  D. G. HURLEY 
Department of Mathematics, University of Western Australia, Nedlands 

(Received 28 October 1976 and in revised form 16 March 1977) 

A train of surface gravity waves of wavelength h in a channel of depth H is incident 
on a horizontal plate of length 1 that is submerged to a depth c. Under the assumption 
that both h and 1 are large compared with H ,  the method of matched asymptotic 
expansions is used to show that, to first order, the reflexion coefficient R and the 
transmission coefficient T are given by 

crl . a1 - 2 (fi) c +  (1  - cos-)) a1 

x = 1 / ( ~ ( ~ )  c +  (1-cos*)+-(-) ul H 4 (i+$) sin- CTl 

(9C)+ 
and 

where 

( 9 C P  b 9 (94+ 

u is the angular frequency and g the acceleration due to gravity. 

1. Introduction 
This investigation is motivated by the desire to build breakwaters that are buoyant 

and are of a less permanent nature. A start on the problem was made by Heins (1950) 
and later Greene BE Heins (1953), who considered semi-infinite barriers. A related 
problem is the floating finite dock. This was considered by Holford (1964) for the short- 
wave limit using an approximate kernel in an integral-equation approach. This 
problem was solved again, this time through matched asymptotic expansions, by 
Leppington (1972) and Hermans (1972). Stoker (1957, p. 430) and Wells (1953) dis- 
cussed the problem in terms of shallow-water theory. 

Burke (1964) considered a submerged finite plate in water of infinite depth using a 
Wiener-Hopf technique. This result was generalized to the case of finite depth in 
Siew (1976). 

In this investigation we consider the effect on a train of waves of wavelength h of 
a horizontal plate of length 1 that is submerged to a depth c in a channel of depth H .  
The method of matched asymptotic expansions is used to determine the reflexion 
coefficient R and the transmission coefficient T in the limit e = KH -+ 0 with K Z  fixed. 
Here K = a/(gH)* is the wavenumber according to shallow-water theory, u being the 
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angular frequency and g the acceleration due to gravity, and the limit corresponds to 
both h and 1 being large compared with H. In this approach there are four ‘outer’ 
regions: one far upstream of the plate, one far downstream and two above and below 
the plate respectively that are far from both its edges. The solutions in these regions 
are determined in 3 2. The vicinity of either edge of the plate is an ‘inner ’ region and 
the solutions here are determined in 4 3. The matching of the inner and outer solutions 
is accomplished in 334 and 5.  Section 6 outlines a scheme for obtaining higher approxi- 
mations and the results are discussed in $ 7 .  Section 8 gives an extension to the case 
of oblique incidence. 

2. The outer solutions 
In  terms of the velocity potential Q, the governing equations are 

QZZ + Qgg = 0, 
Qg- (az/g) Q = 0 on y = H ,  

where the origin of the rectangular axes Oxy is taken at  the bottom of the channel, 
with y increasing to H at the free surface. The plate occupies 1x1 < a, y = b (0 < b < H ) ,  
and a time-dependent factor e-iut is assumed throughout. 

It is well known that when the wavelength h is large compared with the depth H 
the phase speed is approximately (gH)* and a wavelength scale is (gH)*/cr. In  x B a 
we therefore define the non-dimensional co-ordinates 

with a small parameter E = cr(H/g)* = O(H/h) .  Equations 

Q y y  f E 2 Q X X  = 0, 

CD,-s2Q,=O on Y =  1, 

@ , = O  on Y = O .  

In  x < - a, we can similarly define 

(2.1) then become 

(2.2) 

and show that the same differential system (2.2) is obtained. This is also true of the 
region above the plate (but away from the edges), where we shall define 

(597) = ( 0 - x / ( s m  YlH). 
We shall denote by QL the solution appropriate for the region x < -a,  by QR the 
solution for x a and by Qu and QD the solutions for the regions above and below 
the plate. 

The leading-order solution of (2.2) may be obtained easily and from it the form of 
the inner expansion will be evident. In  the spirit of the matched asymptotic method 
the leading term(s) of the inner solution will in turn suggest the order of the next 
term in the outer solution, and so on. We shall assume here, however, that CD has 
an expansion of the form 

Q = Qo + &l1 +$a,, + . . . , (2.3) 
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which may be easily verified from the form of the inner expansions obtained in the 
next two sections. 

In x B a, then, ( 2 . 2 )  leads to the systems 

m = 0, I ,  
@2,, = 0, 

@ g y = O  on y = 0 , 1 ,  

( 2 . 5 )  i 
and R @EY, = - @ n - z X x ,  

@.,Ry = {;.,R-Z on Y = 1 ,  n = 2 , 3 , 4  ,.... 
on Y = 0, 

The representations for QR and hence W and @U are immediate and may be written 
as 

= exp (iX,) + R, exp ( - iX,) + sR, exp ( - iX,) 

In ( 2 . 6 ) - ( 2 . 8 ) ,  we have assumed a wave incident from X ,  = -a with amplitude 
1 + O(s2), that R,, T,, U, and V ,  (n = 0 , 1 , 2 ,  . . .) are constants and that c = H - b. 
(It is noted that for (DU we could use a / ( g c ) )  as the scale for the x co-ordinate; however 
it is clear that the same solution would be obtained and so the one horizontal length 
scale is used in each of the outer representations.) 

We note here that the vertical velocity component comes into the solution only 
through terms of order s2 and higher. Further, the dispersion relation is 

K H  tanh K H  = cr2H/g = s2, 

which gives KH = E + i s 3  + . . . . Consider a wave term given by 

q5% = exp [ ~ K ( z  + a ) ]  cosh K Y ;  

writing KH in terms of s and expanding leads to 

$i = exp (ix,) { 1 + @(QiX, + + Y:) + . . .}. 
Thus the occurrence of polynomials (in X ,  and q) in the coefficients of'the exponential 
terms in (2 .6) - (2 .8)  is to be expected and is a consequence of expanding in powers of 8 .  

In 1x1 < a, 0 < y < b (under the plate) equations (2.1) become 

1 @g + @& = 0, 

@f = O  on y = O , b .  
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These can be solved by separation of variables, and hence we have 
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aD = 1 - ~ ~ l ) ] c o s ~ ,  (2.10) 

where = x/a and P, and Q, (n  = 0, I ,  2, . . .) are constants. 

3. The inner solutions 

and y" = y /H  ( X  = €2) we obtain from (2.1) 
Close to the edge (a,  b )  the relevant length scale is H and on putting Z = (x -a) /H 

I q5a+$gc = 0, 

I $ 2 - ~ 2 q 5 = 0  on j j =  1, 

jj = 0, 
" = O  On { j j = b / H ,  -2a/H < Z : <  0. 

From (2.7),  on putting X = €2 and expanding in the limit s+O we find that 

QR N To + €[i2TO + T,] + O(e2), 

which suggests an inner development of the form 

q5 N q50+E$1+E2(i52+. . .  . 

In (3.1), if we consider plate widths of the order of the wavelength then 

2a/H = O(h/H) = O(l/€),  

and since the matching with the outer limit should be smooth in the limit E -+ 0 it is 
natural to apply the boundary condition on the plate for all negative 2. Substituting 
(3.2) into (3.1) then yields 

and 

(3.4) 

The conditions at  the two infinities will be replaced by the matching requirements 
as discussed in 3 5 .  

Close to the edge ( - a ,  b )  we let 9, = (x +a)/H and jjl = y/H ( X ,  = €2,) and 
hence the solution can be obtained from (3.3) and (3.4) by replacing ;i: with -Zl. 

Now, the solution to (3.3) may be obtained through a Schwarz-Christoffel mapping 
as depicted in figure 1, where the complex 2 plane is mapped onto the upper half of 
the 5 plane. This is accomplished by the mapping defined by 

dZ/ld< = k(C+d) - lg (c -  1)-1, (3.5) 
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C 
(3.6) 

c c  
{in (5- 1 )  + d In ( [ + d ) )  -- In- d = - - b  

b' 
z = -  

7rH b' 
whence 

7lH 

where the constants k and d have been determined by the usual method. 

constant along the boundaries of the region, we have 
In  terms of the complex potential W(5)  = $+ill., which is such that Im W is 

(3.7) 

(3.8) 

w,({) = -1n(5+d)+$ln([-i)+P Qa 

77 

and = - -1n(5+d)+~ln( l ; - l )+P ' ,  Q:, Q' 
7T 

where Q,, Qb, F ,  Qh, Qb and F' are constants. 

we put + = 0 along the bottom of the channel P (and PI) also should be real. 
Im W constant along A,B, requires Qa and Qb (and QL and Qb) to be real, while if 

4. The outer expansion of the inner solution 
In  anticipation of the matching of the solutions in the last two sections we shall 

now proceed to obtain the form of the solutions $o and in the limit P + 00 with X 
fixed (where 2 = X/e) .  From figure 1 we see that P + co corresponds to I[/ -+ co in 
the 5 plane and from (3.6) we have 

whence it can be shown that 

{ N exp xi?+- In - +-+O(exp( -7~2)) for 121 9 1 [ ; (31 bbc 
Equation (3.7) then gives 

6 N Qfi(,i+$ln$+P+O(exp(-nz^)) 7T for 2 9 1, 0 < y" < 1 .  (4.1) 

The real part of (4.1) yields 

q+, = +(nZ+iln;) +p++(exp(-r2))  for z 9 1, (44 
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which, in terms of the outer variable X ,  is 
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$,, = 7 Qa+Qb(nEx -+-ln- i )  +F+O(exp(-nX/e)). 

It is obvious that for matching with (2.7) to be possible (Q,+Qb)X/e must be zero. 
On the other hand, when d < - 1 and b/H < y" < 1 we are over the plate and y is 
near B,  in figure 1 ( b ) .  Putting I [ +d (  < 1 in (3 .6)  and expanding as before leads to 

b 
H 

+P+O(exp(nHZ"/c)) for d <  - 1 ,  - < y" < 1, 

the real part of which gives 

This should match with <Du near 5 = cra/(gH)* (x = a) .  Now we have 

c = €2 + aa/(gH)*, 

and, on writing (4 .3 )  in terms of the outer variable c, the same argument as before 
requires that Q, = 0 for matching to be possible. Thus Q, = 0 = Qb and we have 
finally that 

Wo(2) = F .  (4 .4)  

The corresponding expansion for can be obtained immediately from (4.2) and 
(4 .3 ) .  Under the barrier with d < - 1, 5 is close to unity and expanding for 5- 1 
small in (3 .6 )  and ( 3 . 8 )  leads to 

+F' + O(exp ( n H d / b ) )  for D << - 1 ,  0 < y" < b / H .  (4.5) 

Summarizing, we now have that near the edge (a,  b )  

+F'+O(exp(-nd)) for 2 + 1 ,  ( 4 . 6 ~ )  

+P' + O(exp (n Hd/c)) 

$0+"1= for d << -1, b/H < y" < 1, (4 .6b)  

1 P + E ( g l n z + @  ( 2  - + F' + 0 (exp (nHd/b))  
n b b  

\ for 5 < - 1 ,  0 < t'j < b / H .  ( 4 . 6 ~ )  
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The corresponding expansions near the other edge ( - a, b) are obtained from (4 .6~-c )  
by replacing Qb, Qi ,  F and F' by QL, Q;, G and G' and Z by -Zl and are given by 

( c + e ( F (  
+G'+O(exp(nZl)) for Zl < - 1 ,  ( 4 . 7 ~ )  

"+"' = for Zl >> 1, b/H < y" < 1, (4.7b) 

I G + E  { g l n c + g  ( 
?TH c +G' + O  (exp (-nHZ,/b)) n b  b 

\ for Zl >> 1,  0 < y" < b/H. ( 4 . 7 ~ )  

The variables and constants in (4.6) and (4.7) will indicate which edge is being 
referred to. 

5. The matching 
The matching is performed by use of the principle outlined by Van Dyke (1964, 

p. 89). Writing (4.6) in terms of the outer variable X and retaining only terms of 
zero order (eO), we have in the various regions 

( 5 . 1 ~ )  

This is the one-term,outer limit of the two-term inner expansion and we note that 
€a = auH/(gH)* = O ( H )  for 2a = O(h) .  The two-term inner limit of the one-term 
outer expansion, in terms of the outer variable X, is 

(5.2) CDR = To +ieZT0+ ... = To+iXTo+ O ( E ) ,  

CD = U, exp [iaa/(gc)*] + V, exp [ - iaa/(gc)*] 

+i(H/c)t (E-D)  {Uoexp [iaa/(gc)*] -V,exp [ -iaa/(gc)*]}+ O ( s ) ,  (5.3) 

and aD = P , ( 6 , - 1 ) + P , + Q O  (5.4) 

in the various regions, and we note that (5.4) may be taken as the entire outer solution 
under the plate since, the plate width being taken to be O(h) ,  the summation terms in 
(2.10) would become arbitrarily large near x = f a ,  so that P, and Q, (n = 1,2,  ...) 
must be arbitrarily small. Matching (5.2), (5.3) and (5.4) with (5 . la ,  b, c)  gives in the 
various regions 

F=To, iTo = Qi+QL, ( 5 . 5 4  

F = Uo exp ( i a K o )  + V, exp ( - i a K o ) ,  - - [U, exp (iaKo) - V, exp ( - im0)], 
(5.5b) 

c 
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where K, and K denote a/(gc)* and a/(gH)*, the wavenumbers for waves above and 
away from the plate respectively. For the expansions near the edge ( -a, b) the corres- 
ponding development gives 

G -  (QI. + Q&1)  Xi + O(S), 
$+c$o = G-(QAH/c) (E+D)+O(e) ,  I G -  ( a ~ H / b )  Q&(C;, + 1) + O(e), 

and 
W = 1 + Ro+i(l - Ro) Xl + O(S) ,  

@ = U, exp ( - iaK,) + V, exp ( ~ u K , )  + i( H/c)* (6 + D) (U, exp ( - ~ u K , )  
- V, exp ( i u ~ , ) ]  + O(E),  

W = Po((l+ 1) -Po + Qo + O(S). 

Matching now gives 
G =  1+R,, -Qi-Q' d - - i(l-Ro)> 

1 G = U, exp ( - iaK,) + V, exp ( ~ u K , ) ,  

- QI. H/c  = i( H/c)* [ U, exp ( - iaK,)  - V, exp ( i a ~ , ) ] ,  
G = -Po+&,, (-aKH/b)Q&1= P,. 

Eliminating in favour of R,, To, U, and V, in (5 .5)  and (5.8) leaves us with 

R, - exp ( - iaK, )  Uo - exp ( ~ u K , )  V, = - 1 ,  

To - exp ( ~ u K , )  U, - exp ( - iaK,) V, = 0, 

R, + To - 2i(c/H)* sin (aK,) U,, - 2i(c/H)& sin ( u K ~ )  V, = 1, 

( 5 . 6 ~ )  

(5.6b) 

( 5 . 6 ~ )  

(5 .7a)  

(5.7b) 
(5.7c) 

( 5 . 8 ~ )  

(5.8b) 

( 5 . 8 ~ )  

( 5 . 9 ~ )  

(5 .9b )  

(5.9c) 

R,+T,+-j;-(cH)*exp(--iaK,)U,,-- 2 i a ~  2 i a ~  i 2 a ~ H  
(cH) i  exp ( ~ u K , )  V, = 1 + - 

b *  b 
( 5 . 9 d )  

This system can be solved for the zero-order reflexion and transmission coefficients, 

R, = X ( K Z  sin 8 - 2p( 1 - cos O)} (5.10) 

and T, = ~{2i(sin 8 + KlHp/b)), (5.11) 

which are identified as R, and To respectively. We have then 

KIH 
b 

where x = I / (  2p( 1 - cos 8 )  + - ( 1  +p2) sin 8 + 2i 

1 = 2a, 8 = K,Z  andp  = (c/H)*. It can be shown that \Rot2+ /TOIS = 1. 

6. Higher approximations 
The matching scheme outlined in the previous section may be extended to any 

order provided of course that the higher-order solutions can be obtained explicitly. 
For the outer solution there is no problem as is evident from the form of the system 
(2.5). For the inner solution we shall content ourselves with the second-order (e2) 
terms only. From (3.4) we seek a harmonic function FEZ([) satisfying 

-ReW, on y " =  1 or A,B,, 
Im- = dz" 0 elsewhere along the Re 5 axis 
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near the edge (a,  b), where the same mapping is used as for finding W, and W,. W, being 
given by (4.4) leads to 

whence we have 

dW2- dZ F 
d[ --- d[ In (5 + d)> - 

CF cln(u+d) b F  cln(u+d)du. w--m/ 2 -  u + d  du-- n2H s U-1 
It can be shown that 

+0{(<+d)21n([+d)} as t r +  -d, 

where I and I, are arbitrary constants, which are related in principle once a suitable 
lower limit is chosen. The real part of W, yields 

F c  c (" nH b 
- T ( x 2  - 52) - 2 - In - + f - - 2 ~ ? 2 ( l n ~ ) 2 + 0 ( 2 e x p ( - n x ) )  for 2 %  1, ( 6 . 2 ~ )  

FH FH 

\ + O(xexp (nHZ/c)) for 2 < - 1, b/H < g < 1. (6 .2b)  

Near the edge ( -a, b ) ,  5b2 is given by (6.2) with F, f and 1; replaced by G ,  J and Jl, 
say, and 2 replaced by - 2,. It can be shown that the matching up to terms involving 
e2 follows through easily, but it is evident that the algebra will consistently become 
more difficult as one goes to higher orders. We shall not pursue this further. 

7. Discussion 
We note that QU as given by (2.8) is valid provided that ,u = ( c / H ) )  + 0. If ,u = 0,  

the plate is on the surface and from (&lo), on letting ,u + 0 with K Z  fixed, we obtain 

This is the first-order reflexion coefficient obtained by Wells (1953) for the rigid 
floating dock. Returning to (5.10) we find that, for ,u sufficiently small that ,u2 < 1 
and8 = 2 n n + ~ ,  n = 1 ,2 ,  ..., I E ~  < 1, 

lRol = K a / ( K 2 a 2 + l ) 4  for ,u = 0 ,  8 =k nn, n = 0,1,2, ... . (7.1) 

whereas when 8 = (2n + 1) n + E  

+ O ( E 2 ) .  
(2n+l)n,ue+4,ul 

l R o l  = ([4p - (2n + i) ~ p e ] ~  + 4{e + (2n + 1) n,u2I2}k 

These features are illustrated in figure 2, which gives a plot of I R,I €or a surface plate 
(p = 0 )  and a plate very close to the surface (,u = 0.005). 

Another interesting aspect of the solution is the very simple form of the expressions 
for the reflexion and transmission coefficients given by (5.10) and (5.1 I), which makes 
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0.6 - 

04 - 

0.2 - 

0 -  

IRol 

0.8 ’”? 

K [  

FICURE 2. Plot of lRol against K Z .  --, p = 0 ;  - - -, p = 0.005. (For p = 0.005, 
0 = ~ 1 / p  = 1 2 8 ~  at KZ = 2.01062 and 0 = 13077 at K Z  = 2.04204.) 

it easy to check the energy balance. As another check, we may consider the sill mound, 
which is equivalent to assuming zero flux below the plate. On putting Po = 0 in (5.4), 
(5 .5) ,  (5.7) and (5.8) and solving the resultant equations for Ro we find 

(1 -ru.2)2 
JRoJ2 = 4p2 cot2 8 + (1 +,u2)2’ 

where 8 andp are as defined after (5.11). Equation (7.2) is the expression first obtained 
by Rayleigh (1945, vol. 2, p. 87) in his discussion of the analogous problem of the 
reflexion of waves from a plate of finite thickness. 

Further, in the limit of a semi-infinite barrier, the leading-order terms R, and U, 
may be obtained from (5.8). Assuming the barrier to occupy the position 0 < x < 00, 

y = b,  we have from (2.10) that P, (n = 0,1, ...) must be zero for the solution to be 
bounded, and (5.8) then gives 

1 + Ro = Uo = ~ ( H / G ) *  96 = ( H / c ) ~  (1 - Ro), 

whence KO- K 2KO 
K ~ + K ’  K ~ + K ’  

Ro = ~ To = - (7.3) 

These are the limiting forms of the reflexion and transmission coefficients for h $ H 
and may be derived from the results of Heins (1950). 

8. Oblique incidence 
The analysis in 9s2-5 may be easily adapted to a special case of oblique incidence. 

Under the assumptions that the wavelength A is large compared with the depth of 
the channel and that the variation of CD in the lateral ( z )  direction is harmonic, the 
linear model reduces to 

(8.1) I + - k2@ = 0, 

CDy - (cr2/g) CD = 0 on y = H ,  
Gy = 0 on the plate and channel floor, 
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where we have replaced @(x, y, z )  by @(x, y) exp (ikz), the plate occupies 

1x1 <a, y = b ,  -a < z  < m ,  

151 

the Oz axis is parallel to t,he edge of the plate, and the projection in the Oxy plane is 
as described in $2.  For h > H we again define a small parameter e = a(H/g)&, whence 
kH < p o H  < 1,  po being the positive real root of the equation 

psinhpH- (a2/g)coshpH = 0. 

and Q1 

are of the same form as before for the regions x $ a ,  1x1 < a (above the plate) and 
x < -a. For the region under the plate it is more convenient to let c1 = x/a and 
ql = y/b. Then, confining ourselves again to  the case a = O(h) ,  we find that b/a = O(s) 
and hence @f takes the form PA c1 + Qh, where PA and QA are arbitrary constants. 
The inner solution again takes the same form as in $ 3, and the leading values for the 
reflexion and transmission coefficients are given by (5.10) and (5.1 1 )  with K replaced 
by a / (gH) )  and K~ by a/(gc)*. 

The scheme does not, however, allow us to calculate higher approximations since 
one would need to define the ratio k/po more precisely before could be determined. 
For the inner region the powerful method of conformal mapping cannot be used since 
q52 would not then satisfy Laplace’s equation. 

If we assume the outer expansion to be given by (2.3) the solutions for 
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